neuralop.losses.LpLoss

class neuralop.losses.LpLoss(d=1, p=2, L=6.283185307179586, reduce_dims=0, reductions='sum')[source]

LpLoss provides the L-p norm between two discretized d-dimensional functions

Attributes:
name

Methods

__call__(y_pred, y, **kwargs)

Call self as a function.

abs(x, y[, h])

absolute Lp-norm

reduce_all(x)

reduce x across all dimensions in self.reduce_dims according to self.reductions

rel(x, y)

rel: relative LpLoss computes ||x-y||/||y||

uniform_h(x)

uniform_h creates default normalization constants if none already exist.

uniform_h(x)[source]

uniform_h creates default normalization constants if none already exist.

Parameters:
xtorch.Tensor

input data

Returns:
hlist

list of normalization constants per-dim

reduce_all(x)[source]

reduce x across all dimensions in self.reduce_dims according to self.reductions

abs(x, y, h=None)[source]

absolute Lp-norm

Parameters:
xtorch.Tensor

inputs

ytorch.Tensor

targets

hfloat or list, optional

normalization constants for reduction either single scalar or one per dimension

rel(x, y)[source]

rel: relative LpLoss computes ||x-y||/||y||

Parameters:
xtorch.Tensor

inputs

ytorch.Tensor

targets