neuralop.losses
.H1Loss
- class neuralop.losses.H1Loss(d=1, L=6.283185307179586, reduce_dims=0, reductions='sum', fix_x_bnd=False, fix_y_bnd=False, fix_z_bnd=False)[source]
H1Loss provides the H1 Sobolev norm between two d-dimensional discretized functions
- Attributes:
- name
Methods
__call__
(y_pred, y[, h])abs
(x, y[, h])absolute H1 norm
compute_terms
(x, y, h)compute_terms computes the necessary finite-difference derivative terms for computing the H1 norm
reduce_all
(x)reduce x across all dimensions in self.reduce_dims according to self.reductions
rel
(x, y[, h])relative H1-norm
uniform_h
(x)uniform_h creates default normalization constants if none already exist.
- compute_terms(x, y, h)[source]
compute_terms computes the necessary finite-difference derivative terms for computing the H1 norm
- Parameters:
- xtorch.Tensor
inputs
- ytorch.Tensor
targets
- hint or list
discretization size (single or per dim)
- Returns:
- _type_
_description_
- uniform_h(x)[source]
uniform_h creates default normalization constants if none already exist.
- Parameters:
- xtorch.Tensor
input data
- Returns:
- hlist
list of normalization constants per-dim
- reduce_all(x)[source]
reduce x across all dimensions in self.reduce_dims according to self.reductions
- abs(x, y, h=None)[source]
absolute H1 norm
- Parameters:
- xtorch.Tensor
inputs
- ytorch.Tensor
targets
- hfloat or list, optional
normalization constant for reduction, by default None
- rel(x, y, h=None)[source]
relative H1-norm
- Parameters:
- xtorch.Tensor
inputs
- ytorch.Tensor
targets
- hfloat or list, optional
normalization constant for reduction, by default None