neuralop.layers.gno_block
.GNOBlock
- class neuralop.layers.gno_block.GNOBlock(in_channels: int, out_channels: int, coord_dim: int, radius: float, transform_type='linear', pos_embedding_type: str = 'transformer', pos_embedding_channels: int = 32, pos_embedding_max_positions: int = 10000, channel_mlp_layers: ~typing.List[int] = [128, 256, 128], channel_mlp_non_linearity=<built-in function gelu>, channel_mlp: ~torch.nn.modules.module.Module = None, use_open3d_neighbor_search: bool = True, use_torch_scatter_reduce: bool = True)[source]
GNOBlock implements a Graph Neural Operator layer as described in [1].
A GNO layer is a resolution-invariant operator that maps a function defined over one coordinate mesh to another defined over another coordinate mesh using a pointwise kernel integral that takes contributions from neighbors of distance 1 within a graph constructed via neighbor search with a specified radius.
Optionally, if provided, the input and output queries can have a positional embedding applied using the argument pos_embedding.
The kernel integral computed in IntegralTransform computes one of the following:
int_{A(x)} k(x, y) dy
int_{A(x)} k(x, y) * f(y) dy
int_{A(x)} k(x, y, f(y)) dy
int_{A(x)} k(x, y, f(y)) * f(y) dy
- Parameters:
- in_channelsint
number of channels in input function. Only used if transform_type is (c) “nonlinear” or (d) “nonlinear_kernelonly”
- out_channelsint
number of channels in output function
- coord_dimint
dimension of domain on which x and y are defined
- radiusfloat
radius in which to search for neighbors
Methods
forward
(y, x[, f_y, reduction])Compute a GNO neighbor search and kernel integral transform.
- Other Parameters:
- transform_typestr, optional
Which integral transform to compute. The mapping is: ‘linear_kernelonly’ -> (a) ‘linear’ -> (b) [DEFAULT] ‘nonlinear_kernelonly’ -> (c) ‘nonlinear’ -> (d) If the input f is not given then (a) is computed by default independently of this parameter.
- pos_embedding_type: literal {‘transformer’, ‘nerf’} | None
type of positional embedding to use during the kernel integral transform. see neuralop.layers.embeddings.SinusoidalEmbedding for more details. default ‘transformer’
- pos_embedding_channelsint
per-channel dimension of optional positional embedding to use, by default 32
- pos_embedding_max_positions: int
max_positions parameter for SinusoidalEmbedding of type ‘transformer’. If pos_embedding_type != ‘transformer’, this value is not used. Default 10000
- channel_mlp_layersList[int], optional
list of layer widths to dynamically construct LinearChannelMLP network to parameterize kernel k, by default None
- channel_mlp_non_linearitytorch.nn function, optional
activation function for ChannelMLPLinear above, by default F.gelu
- channel_mlpnn.Module, optional
ChannelMLP parametrizing the kernel k. Input dimension should be dim x + dim y or dim x + dim y + dim f. ChannelMLP should not be pointwise and should only operate across channels to preserve the discretization-invariance of the kernel integral. If you have more specific needs than the LinearChannelMLP, this argument allows you to pass your own Module to parameterize the kernel k. Default None.
- use_open3d_neighbor_search: bool, optional
whether to use open3d or native-PyTorch search
- use_torch_scatter_reducebool, optional
whether to reduce in integral computation using a function provided by the extra dependency torch_scatter or the slower native PyTorch implementation, by default True
References
[1]:
- Zongyi Li, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Anima Anandkumar (2020). “Neural Operator: Graph Kernel Network for Partial Differential Equations.” ArXiV, https://arxiv.org/pdf/2003.03485.
Examples
``` >>> gno = GNOBlock(in_channels=2, out_channels=12, coord_dim=3, radius=0.035)
>>> gno GNOBlock( (pos_embedding): SinusoidalEmbedding() (neighbor_search): NeighborSearch() (channel_mlp): LinearChannelMLP( (fcs): ModuleList( (0): Linear(in_features=384, out_features=128, bias=True) (1): Linear(in_features=128, out_features=256, bias=True) (2): Linear(in_features=256, out_features=128, bias=True) (3): Linear(in_features=128, out_features=12, bias=True) ) ) (integral_transform): IntegralTransform( (channel_mlp): LinearChannelMLP( (fcs): ModuleList( (0): Linear(in_features=384, out_features=128, bias=True) (1): Linear(in_features=128, out_features=256, bias=True) (2): Linear(in_features=256, out_features=128, bias=True) (3): Linear(in_features=128, out_features=12, bias=True) ) ) ) ) ```
- forward(y, x, f_y=None, reduction='sum')[source]
Compute a GNO neighbor search and kernel integral transform.
- Parameters:
- ytorch.Tensor of shape [n, d1]
n points of dimension d1 specifying the space to integrate over. If batched, these must remain constant over the whole batch so no batch dim is needed.
- xtorch.Tensor of shape [m, d1], default None
m points of dimension d1 over which the output function is defined. Must share domain with y
- f_ytorch.Tensor of shape [batch, n, d2] or [n, d2], default None
Function to integrate the kernel against defined on the points y. The kernel is assumed diagonal hence its output shape must be d3 for the transforms (b) or (d). If None, (a) is computed.