neuralop.data.transforms.normalizers.DictUnitGaussianNormalizer

class neuralop.data.transforms.normalizers.DictUnitGaussianNormalizer(normalizer_dict: Dict[str, UnitGaussianNormalizer], input_mappings: Dict[str, slice], return_mappings: Dict[str, slice])[source]

DictUnitGaussianNormalizer composes DictTransform and UnitGaussianNormalizer to normalize different fields of a model output tensor to Gaussian distributions w/ mean 0 and unit variance.

Parameters:
normalizer_dictDict[str, UnitGaussianNormalizer]

dictionary of normalizers, keyed to fields

input_mappingsDict[slice]

slices of input tensor to grab per field, must share keys with above

return_mappingsDict[slice]

_description_

Methods

from_dataset(dataset[, dim, keys, mask])

Return a dictionary of normalizer instances, fitted on the given dataset

classmethod from_dataset(dataset, dim=None, keys=None, mask=None)[source]

Return a dictionary of normalizer instances, fitted on the given dataset

Parameters:
datasetpytorch dataset

each element must be a dict {key: sample} e.g. {‘x’: input_samples, ‘y’: target_labels}

dimint list, default is None
  • If None, reduce over all dims (scalar mean and std)

  • Otherwise, must include batch-dimensions and all over dims to reduce over

keysstr list or None

if not None, a normalizer is instanciated only for the given keys