neuralop.data.transforms.data_processors.DefaultDataProcessor

class neuralop.data.transforms.data_processors.DefaultDataProcessor(in_normalizer=None, out_normalizer=None)[source]

DefaultDataProcessor is a simple processor to pre/post process data before training/inferencing a model.

Methods

forward(**data_dict)

forward call wraps a model to perform preprocessing, forward, and post- processing all in one call

postprocess(output, data_dict)

postprocess model outputs and data_dict into format expected by training or val loss

preprocess(data_dict[, batched])

preprocess a batch of data into the format expected in model's forward call

to(device)

Move and/or cast the parameters and buffers.

to(device)[source]

Move and/or cast the parameters and buffers.

This can be called as

to(device=None, dtype=None, non_blocking=False)[source]
to(dtype, non_blocking=False)[source]
to(tensor, non_blocking=False)[source]
to(memory_format=torch.channels_last)[source]

Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

See below for examples.

Note

This method modifies the module in-place.

Args:
device (torch.device): the desired device of the parameters

and buffers in this module

dtype (torch.dtype): the desired floating point or complex dtype of

the parameters and buffers in this module

tensor (torch.Tensor): Tensor whose dtype and device are the desired

dtype and device for all parameters and buffers in this module

memory_format (torch.memory_format): the desired memory

format for 4D parameters and buffers in this module (keyword only argument)

Returns:

Module: self

Examples:

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j,  0.2382+0.j],
        [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
preprocess(data_dict, batched=True)[source]

preprocess a batch of data into the format expected in model’s forward call

By default, training loss is computed on normalized out and y and eval loss is computed on unnormalized out and y

Parameters:
data_dictdict

input data dictionary with at least keys ‘x’ (inputs) and ‘y’ (ground truth)

batchedbool, optional

whether data contains a batch dim, by default True

Returns:
dict

preprocessed data_dict

postprocess(output, data_dict)[source]

postprocess model outputs and data_dict into format expected by training or val loss

By default, training loss is computed on normalized out and y and eval loss is computed on unnormalized out and y

Parameters:
outputtorch.Tensor

raw model outputs

data_dictdict

dictionary containing single batch of data

Returns:
out, data_dict

postprocessed outputs and data dict

forward(**data_dict)[source]

forward call wraps a model to perform preprocessing, forward, and post- processing all in one call

Returns:
output, data_dict

postprocessed data for use in loss