neuralop.data.datasets.navier_stokes.NavierStokesDataset
- class neuralop.data.datasets.navier_stokes.NavierStokesDataset(root_dir: Path | str, n_train: int, n_tests: List[int], batch_size: int, test_batch_sizes: List[int], train_resolution: int, test_resolutions: int = [16, 32], encode_input: bool = False, encode_output: bool = True, encoding='channel-wise', channel_dim=1, subsampling_rate=None, download: bool = True)[source]
NavierStokesDataset stores data generated according to the 2d incompressible Navier-Stokes equations. Input and output are both 2d fields with one channel of data which describes the vorticity at each point.
Data source: https://zenodo.org/records/12825163
- Parameters:
- root_dirUnion[Path, str]
root at which to download data files
- n_trainint
number of train instances
- n_testsList[int]
number of test instances per test dataset
- batch_sizeint
batch size of training set
- test_batch_sizesList[int]
batch size of test sets
- train_resolutionint
resolution of data for training set
- test_resolutionsList[int], optional
resolution of data for testing sets, by default [16,32]
- encode_inputbool, optional
whether to normalize inputs in provided DataProcessor, by default False
- encode_outputbool, optional
whether to normalize outputs in provided DataProcessor, by default True
- encodingstr, optional
parameter for input/output normalization. Whether to normalize by channel (“channel-wise”) or by pixel (“pixel-wise”), default “channel-wise”
- channel_dimint, optional
dimension of saved tensors to index data channels, by default 1
- subsampling_rateint or List[int], optional
rate at which to subsample each input dimension, by default None
- downloadbool, optional
whether to download data if not present, by default True
- Attributes:
- train_db: torch.utils.data.Dataset of training examples
- test_db: “” of test examples
- data_processor: neuralop.data.transforms.DataProcessor to process data examples
optional, default is None