Source code for neuralop.models.fno

from functools import partialmethod
from typing import Tuple, List, Union

Number = Union[float, int]

import torch
import torch.nn as nn
import torch.nn.functional as F

from ..layers.embeddings import GridEmbeddingND, GridEmbedding2D
from ..layers.spectral_convolution import SpectralConv
from ..layers.padding import DomainPadding
from ..layers.fno_block import FNOBlocks
from ..layers.channel_mlp import ChannelMLP
from ..layers.complex import ComplexValued
from .base_model import BaseModel

[docs] class FNO(BaseModel, name='FNO'): """N-Dimensional Fourier Neural Operator. The FNO learns a mapping between spaces of functions discretized over regular grids using Fourier convolutions, as described in [1]_. The key component of an FNO is its SpectralConv layer (see ``neuralop.layers.spectral_convolution``), which is similar to a standard CNN conv layer but operates in the frequency domain. For a deeper dive into the FNO architecture, refer to :ref:`fno_intro`. Parameters ---------- n_modes : Tuple[int] number of modes to keep in Fourier Layer, along each dimension The dimensionality of the FNO is inferred from ``len(n_modes)`` in_channels : int Number of channels in input function out_channels : int Number of channels in output function hidden_channels : int width of the FNO (i.e. number of channels), by default 256 n_layers : int, optional Number of Fourier Layers, by default 4 Documentation for more advanced parameters is below. Other parameters ------------------ lifting_channel_ratio : int, optional ratio of lifting channels to hidden_channels, by default 2 The number of liting channels in the lifting block of the FNO is lifting_channel_ratio * hidden_channels (e.g. default 512) projection_channel_ratio : int, optional ratio of projection channels to hidden_channels, by default 2 The number of projection channels in the projection block of the FNO is projection_channel_ratio * hidden_channels (e.g. default 512) positional_embedding : Union[str, nn.Module], optional Positional embedding to apply to last channels of raw input before being passed through the FNO. Defaults to "grid" * If "grid", appends a grid positional embedding with default settings to the last channels of raw input. Assumes the inputs are discretized over a grid with entry [0,0,...] at the origin and side lengths of 1. * If an initialized GridEmbedding module, uses this module directly See :mod:`neuralop.embeddings.GridEmbeddingND` for details. * If None, does nothing non_linearity : nn.Module, optional Non-Linear activation function module to use, by default F.gelu norm : str {"ada_in", "group_norm", "instance_norm"}, optional Normalization layer to use, by default None complex_data : bool, optional Whether data is complex-valued (default False) if True, initializes complex-valued modules. channel_mlp_dropout : float, optional dropout parameter for ChannelMLP in FNO Block, by default 0 channel_mlp_expansion : float, optional expansion parameter for ChannelMLP in FNO Block, by default 0.5 channel_mlp_skip : str {'linear', 'identity', 'soft-gating'}, optional Type of skip connection to use in channel-mixing mlp, by default 'soft-gating' fno_skip : str {'linear', 'identity', 'soft-gating'}, optional Type of skip connection to use in FNO layers, by default 'linear' resolution_scaling_factor : Union[Number, List[Number]], optional layer-wise factor by which to scale the domain resolution of function, by default None * If a single number n, scales resolution by n at each layer * if a list of numbers [n_0, n_1,...] scales layer i's resolution by n_i. domain_padding : Union[Number, List[Number]], optional If not None, percentage of padding to use, by default None To vary the percentage of padding used along each input dimension, pass in a list of percentages e.g. [p1, p2, ..., pN] such that p1 corresponds to the percentage of padding along dim 1, etc. domain_padding_mode : str {'symmetric', 'one-sided'}, optional How to perform domain padding, by default 'one-sided' fno_block_precision : str {'full', 'half', 'mixed'}, optional precision mode in which to perform spectral convolution, by default "full" stabilizer : str {'tanh'} | None, optional whether to use a tanh stabilizer in FNO block, by default None Note: stabilizer greatly improves performance in the case `fno_block_precision='mixed'`. max_n_modes : Tuple[int] | None, optional * If not None, this allows to incrementally increase the number of modes in Fourier domain during training. Has to verify n <= N for (n, m) in zip(max_n_modes, n_modes). * If None, all the n_modes are used. This can be updated dynamically during training. factorization : str, optional Tensor factorization of the FNO layer weights to use, by default None. * If None, a dense tensor parametrizes the Spectral convolutions * Otherwise, the specified tensor factorization is used. rank : float, optional tensor rank to use in above factorization, by default 1.0 fixed_rank_modes : bool, optional Modes to not factorize, by default False implementation : str {'factorized', 'reconstructed'}, optional * If 'factorized', implements tensor contraction with the individual factors of the decomposition * If 'reconstructed', implements with the reconstructed full tensorized weight. decomposition_kwargs : dict, optional extra kwargs for tensor decomposition (see `tltorch.FactorizedTensor`), by default dict() separable : bool, optional (**DEACTIVATED**) if True, use a depthwise separable spectral convolution, by default False preactivation : bool, optional (**DEACTIVATED**) whether to compute FNO forward pass with resnet-style preactivation, by default False conv_module : nn.Module, optional module to use for FNOBlock's convolutions, by default SpectralConv Examples --------- >>> from neuralop.models import FNO >>> model = FNO(n_modes=(12,12), in_channels=1, out_channels=1, hidden_channels=64) >>> model FNO( (positional_embedding): GridEmbeddingND() (fno_blocks): FNOBlocks( (convs): SpectralConv( (weight): ModuleList( (0-3): 4 x DenseTensor(shape=torch.Size([64, 64, 12, 7]), rank=None) ) ) ... torch.nn.Module printout truncated ... References ----------- .. [1] : Li, Z. et al. "Fourier Neural Operator for Parametric Partial Differential Equations" (2021). ICLR 2021, https://arxiv.org/pdf/2010.08895. """ def __init__( self, n_modes: Tuple[int], in_channels: int, out_channels: int, hidden_channels: int, n_layers: int=4, lifting_channel_ratio: int=2, projection_channel_ratio: int=2, positional_embedding: Union[str, nn.Module]="grid", non_linearity: nn.Module=F.gelu, norm: str=None, complex_data: bool=False, channel_mlp_dropout: float=0, channel_mlp_expansion: float=0.5, channel_mlp_skip: str="soft-gating", fno_skip: str="linear", resolution_scaling_factor: Union[Number, List[Number]]=None, domain_padding: Union[Number, List[Number]]=None, domain_padding_mode: str="one-sided", fno_block_precision: str="full", stabilizer: str=None, max_n_modes: Tuple[int]=None, factorization: str=None, rank: float=1.0, fixed_rank_modes: bool=False, implementation: str="factorized", decomposition_kwargs: dict=dict(), separable: bool=False, preactivation: bool=False, conv_module: nn.Module=SpectralConv, **kwargs ): super().__init__() self.n_dim = len(n_modes) # n_modes is a special property - see the class' property for underlying mechanism # When updated, change should be reflected in fno blocks self._n_modes = n_modes self.hidden_channels = hidden_channels self.in_channels = in_channels self.out_channels = out_channels self.n_layers = n_layers # init lifting and projection channels using ratios w.r.t hidden channels self.lifting_channel_ratio = lifting_channel_ratio self.lifting_channels = lifting_channel_ratio * self.hidden_channels self.projection_channel_ratio = projection_channel_ratio self.projection_channels = projection_channel_ratio * self.hidden_channels self.non_linearity = non_linearity self.rank = rank self.factorization = factorization self.fixed_rank_modes = fixed_rank_modes self.decomposition_kwargs = decomposition_kwargs self.fno_skip = (fno_skip,) self.channel_mlp_skip = (channel_mlp_skip,) self.implementation = implementation self.separable = separable self.preactivation = preactivation self.complex_data = complex_data self.fno_block_precision = fno_block_precision if positional_embedding == "grid": spatial_grid_boundaries = [[0., 1.]] * self.n_dim self.positional_embedding = GridEmbeddingND(in_channels=self.in_channels, dim=self.n_dim, grid_boundaries=spatial_grid_boundaries) elif isinstance(positional_embedding, GridEmbedding2D): if self.n_dim == 2: self.positional_embedding = positional_embedding else: raise ValueError(f'Error: expected {self.n_dim}-d positional embeddings, got {positional_embedding}') elif isinstance(positional_embedding, GridEmbeddingND): self.positional_embedding = positional_embedding elif positional_embedding == None: self.positional_embedding = None else: raise ValueError(f"Error: tried to instantiate FNO positional embedding with {positional_embedding},\ expected one of \'grid\', GridEmbeddingND") if domain_padding is not None and ( (isinstance(domain_padding, list) and sum(domain_padding) > 0) or (isinstance(domain_padding, (float, int)) and domain_padding > 0) ): self.domain_padding = DomainPadding( domain_padding=domain_padding, padding_mode=domain_padding_mode, resolution_scaling_factor=resolution_scaling_factor, ) else: self.domain_padding = None self.domain_padding_mode = domain_padding_mode self.complex_data = self.complex_data if resolution_scaling_factor is not None: if isinstance(resolution_scaling_factor, (float, int)): resolution_scaling_factor = [resolution_scaling_factor] * self.n_layers self.resolution_scaling_factor = resolution_scaling_factor self.fno_blocks = FNOBlocks( in_channels=hidden_channels, out_channels=hidden_channels, n_modes=self.n_modes, resolution_scaling_factor=resolution_scaling_factor, channel_mlp_dropout=channel_mlp_dropout, channel_mlp_expansion=channel_mlp_expansion, non_linearity=non_linearity, stabilizer=stabilizer, norm=norm, preactivation=preactivation, fno_skip=fno_skip, channel_mlp_skip=channel_mlp_skip, complex_data=complex_data, max_n_modes=max_n_modes, fno_block_precision=fno_block_precision, rank=rank, fixed_rank_modes=fixed_rank_modes, implementation=implementation, separable=separable, factorization=factorization, decomposition_kwargs=decomposition_kwargs, conv_module=conv_module, n_layers=n_layers, **kwargs ) # if adding a positional embedding, add those channels to lifting lifting_in_channels = self.in_channels if self.positional_embedding is not None: lifting_in_channels += self.n_dim # if lifting_channels is passed, make lifting a Channel-Mixing MLP # with a hidden layer of size lifting_channels if self.lifting_channels: self.lifting = ChannelMLP( in_channels=lifting_in_channels, out_channels=self.hidden_channels, hidden_channels=self.lifting_channels, n_layers=2, n_dim=self.n_dim, non_linearity=non_linearity ) # otherwise, make it a linear layer else: self.lifting = ChannelMLP( in_channels=lifting_in_channels, hidden_channels=self.hidden_channels, out_channels=self.hidden_channels, n_layers=1, n_dim=self.n_dim, non_linearity=non_linearity ) # Convert lifting to a complex ChannelMLP if self.complex_data==True if self.complex_data: self.lifting = ComplexValued(self.lifting) self.projection = ChannelMLP( in_channels=self.hidden_channels, out_channels=out_channels, hidden_channels=self.projection_channels, n_layers=2, n_dim=self.n_dim, non_linearity=non_linearity, ) if self.complex_data: self.projection = ComplexValued(self.projection)
[docs] def forward(self, x, output_shape=None, **kwargs): """FNO's forward pass 1. Applies optional positional encoding 2. Sends inputs through a lifting layer to a high-dimensional latent space 3. Applies optional domain padding to high-dimensional intermediate function representation 4. Applies `n_layers` Fourier/FNO layers in sequence (SpectralConvolution + skip connections, nonlinearity) 5. If domain padding was applied, domain padding is removed 6. Projection of intermediate function representation to the output channels Parameters ---------- x : tensor input tensor output_shape : {tuple, tuple list, None}, default is None Gives the option of specifying the exact output shape for odd shaped inputs. * If None, don't specify an output shape * If tuple, specifies the output-shape of the **last** FNO Block * If tuple list, specifies the exact output-shape of each FNO Block """ if output_shape is None: output_shape = [None]*self.n_layers elif isinstance(output_shape, tuple): output_shape = [None]*(self.n_layers - 1) + [output_shape] # append spatial pos embedding if set if self.positional_embedding is not None: x = self.positional_embedding(x) x = self.lifting(x) if self.domain_padding is not None: x = self.domain_padding.pad(x) for layer_idx in range(self.n_layers): x = self.fno_blocks(x, layer_idx, output_shape=output_shape[layer_idx]) if self.domain_padding is not None: x = self.domain_padding.unpad(x) x = self.projection(x) return x
@property def n_modes(self): return self._n_modes @n_modes.setter def n_modes(self, n_modes): self.fno_blocks.n_modes = n_modes self._n_modes = n_modes
[docs] class FNO1d(FNO): """1D Fourier Neural Operator For the full list of parameters, see :class:`neuralop.models.FNO`. Parameters ---------- modes_height : int number of Fourier modes to keep along the height """ def __init__( self, n_modes_height, hidden_channels, in_channels=3, out_channels=1, lifting_channels=256, projection_channels=256, max_n_modes=None, n_layers=4, resolution_scaling_factor=None, non_linearity=F.gelu, stabilizer=None, complex_data=False, fno_block_precision="full", channel_mlp_dropout=0, channel_mlp_expansion=0.5, norm=None, skip="soft-gating", separable=False, preactivation=False, factorization=None, rank=1.0, fixed_rank_modes=False, implementation="factorized", decomposition_kwargs=dict(), domain_padding=None, domain_padding_mode="one-sided", **kwargs ): super().__init__( n_modes=(n_modes_height,), hidden_channels=hidden_channels, in_channels=in_channels, out_channels=out_channels, lifting_channels=lifting_channels, projection_channels=projection_channels, n_layers=n_layers, resolution_scaling_factor=resolution_scaling_factor, non_linearity=non_linearity, stabilizer=stabilizer, complex_data=complex_data, fno_block_precision=fno_block_precision, channel_mlp_dropout=channel_mlp_dropout, channel_mlp_expansion=channel_mlp_expansion, max_n_modes=max_n_modes, norm=norm, skip=skip, separable=separable, preactivation=preactivation, factorization=factorization, rank=rank, fixed_rank_modes=fixed_rank_modes, implementation=implementation, decomposition_kwargs=decomposition_kwargs, domain_padding=domain_padding, domain_padding_mode=domain_padding_mode, ) self.n_modes_height = n_modes_height
[docs] class FNO2d(FNO): """2D Fourier Neural Operator For the full list of parameters, see :class:`neuralop.models.FNO`. Parameters ---------- n_modes_width : int number of modes to keep in Fourier Layer, along the width n_modes_height : int number of Fourier modes to keep along the height """ def __init__( self, n_modes_height, n_modes_width, hidden_channels, in_channels=3, out_channels=1, lifting_channels=256, projection_channels=256, n_layers=4, resolution_scaling_factor=None, max_n_modes=None, non_linearity=F.gelu, stabilizer=None, complex_data=False, fno_block_precision="full", channel_mlp_dropout=0, channel_mlp_expansion=0.5, norm=None, skip="soft-gating", separable=False, preactivation=False, factorization=None, rank=1.0, fixed_rank_modes=False, implementation="factorized", decomposition_kwargs=dict(), domain_padding=None, domain_padding_mode="one-sided", **kwargs ): super().__init__( n_modes=(n_modes_height, n_modes_width), hidden_channels=hidden_channels, in_channels=in_channels, out_channels=out_channels, lifting_channels=lifting_channels, projection_channels=projection_channels, n_layers=n_layers, resolution_scaling_factor=resolution_scaling_factor, non_linearity=non_linearity, stabilizer=stabilizer, complex_data=complex_data, fno_block_precision=fno_block_precision, channel_mlp_dropout=channel_mlp_dropout, channel_mlp_expansion=channel_mlp_expansion, max_n_modes=max_n_modes, norm=norm, skip=skip, separable=separable, preactivation=preactivation, factorization=factorization, rank=rank, fixed_rank_modes=fixed_rank_modes, implementation=implementation, decomposition_kwargs=decomposition_kwargs, domain_padding=domain_padding, domain_padding_mode=domain_padding_mode, ) self.n_modes_height = n_modes_height self.n_modes_width = n_modes_width
[docs] class FNO3d(FNO): """3D Fourier Neural Operator For the full list of parameters, see :class:`neuralop.models.FNO`. Parameters ---------- modes_width : int number of modes to keep in Fourier Layer, along the width modes_height : int number of Fourier modes to keep along the height modes_depth : int number of Fourier modes to keep along the depth """ def __init__( self, n_modes_height, n_modes_width, n_modes_depth, hidden_channels, in_channels=3, out_channels=1, lifting_channels=256, projection_channels=256, n_layers=4, resolution_scaling_factor=None, max_n_modes=None, non_linearity=F.gelu, stabilizer=None, complex_data=False, fno_block_precision="full", channel_mlp_dropout=0, channel_mlp_expansion=0.5, norm=None, skip="soft-gating", separable=False, preactivation=False, factorization=None, rank=1.0, fixed_rank_modes=False, implementation="factorized", decomposition_kwargs=dict(), domain_padding=None, domain_padding_mode="one-sided", **kwargs ): super().__init__( n_modes=(n_modes_height, n_modes_width, n_modes_depth), hidden_channels=hidden_channels, in_channels=in_channels, out_channels=out_channels, lifting_channels=lifting_channels, projection_channels=projection_channels, n_layers=n_layers, resolution_scaling_factor=resolution_scaling_factor, non_linearity=non_linearity, stabilizer=stabilizer, complex_data=complex_data, fno_block_precision=fno_block_precision, max_n_modes=max_n_modes, channel_mlp_dropout=channel_mlp_dropout, channel_mlp_expansion=channel_mlp_expansion, norm=norm, skip=skip, separable=separable, preactivation=preactivation, factorization=factorization, rank=rank, fixed_rank_modes=fixed_rank_modes, implementation=implementation, decomposition_kwargs=decomposition_kwargs, domain_padding=domain_padding, domain_padding_mode=domain_padding_mode, ) self.n_modes_height = n_modes_height self.n_modes_width = n_modes_width self.n_modes_depth = n_modes_depth
def partialclass(new_name, cls, *args, **kwargs): """Create a new class with different default values Notes ----- An obvious alternative would be to use functools.partial >>> new_class = partial(cls, **kwargs) The issue is twofold: 1. the class doesn't have a name, so one would have to set it explicitly: >>> new_class.__name__ = new_name 2. the new class will be a functools object and one cannot inherit from it. Instead, here, we define dynamically a new class, inheriting from the existing one. """ __init__ = partialmethod(cls.__init__, *args, **kwargs) new_class = type( new_name, (cls,), { "__init__": __init__, "__doc__": cls.__doc__, "forward": cls.forward, }, ) return new_class TFNO = partialclass("TFNO", FNO, factorization="Tucker") TFNO1d = partialclass("TFNO1d", FNO1d, factorization="Tucker") TFNO2d = partialclass("TFNO2d", FNO2d, factorization="Tucker") TFNO3d = partialclass("TFNO3d", FNO3d, factorization="Tucker")